3.7.78 \(\int \frac {(a+b \cos (c+d x)) (A+C \cos ^2(c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [678]

3.7.78.1 Optimal result
3.7.78.2 Mathematica [A] (verified)
3.7.78.3 Rubi [A] (verified)
3.7.78.4 Maple [B] (verified)
3.7.78.5 Fricas [C] (verification not implemented)
3.7.78.6 Sympy [F(-1)]
3.7.78.7 Maxima [F]
3.7.78.8 Giac [F]
3.7.78.9 Mupad [B] (verification not implemented)

3.7.78.1 Optimal result

Integrand size = 33, antiderivative size = 95 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 b (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \]

output
-2*a*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1 
/2*d*x+1/2*c),2^(1/2))/d+2/3*b*(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/ 
2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*A*sin(d*x+c)/d/co 
s(d*x+c)^(1/2)+2/3*b*C*sin(d*x+c)*cos(d*x+c)^(1/2)/d
 
3.7.78.2 Mathematica [A] (verified)

Time = 1.07 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.82 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6 a (-A+C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+2 b (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {2 (3 a A+b C \cos (c+d x)) \sin (c+d x)}{\sqrt {\cos (c+d x)}}}{3 d} \]

input
Integrate[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2) 
,x]
 
output
(6*a*(-A + C)*EllipticE[(c + d*x)/2, 2] + 2*b*(3*A + C)*EllipticF[(c + d*x 
)/2, 2] + (2*(3*a*A + b*C*Cos[c + d*x])*Sin[c + d*x])/Sqrt[Cos[c + d*x]])/ 
(3*d)
 
3.7.78.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3511, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3511

\(\displaystyle 2 \int \frac {b C \cos ^2(c+d x)-a (A-C) \cos (c+d x)+A b}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {b C \cos ^2(c+d x)-a (A-C) \cos (c+d x)+A b}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b C \sin \left (c+d x+\frac {\pi }{2}\right )^2-a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )+A b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2}{3} \int \frac {b (3 A+C)-3 a (A-C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {b (3 A+C)-3 a (A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {b (3 A+C)-3 a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (b (3 A+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a (A-C) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (b (3 A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a (A-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (b (3 A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 b (3 A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b C \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

input
Int[((a + b*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(3/2),x]
 
output
((-6*a*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (2*b*(3*A + C)*EllipticF[(c 
+ d*x)/2, 2])/d)/3 + (2*a*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*b*C* 
Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)
 

3.7.78.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3511
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/( 
b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a 
 + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d 
)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] + b 
*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e 
, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
3.7.78.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(294\) vs. \(2(139)=278\).

Time = 15.26 (sec) , antiderivative size = 295, normalized size of antiderivative = 3.11

method result size
default \(\frac {-\frac {8 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}{3}+4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 A b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a +\frac {4 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b}{3}-\frac {2 C b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3}+2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(295\)
parts \(\frac {2 A b \,\operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}+\frac {2 a C \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 C b \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a A \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(518\)

input
int((a+cos(d*x+c)*b)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x,method=_RETURNV 
ERBOSE)
 
output
2/3*(-4*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b+6*A*cos(1/2*d*x+1/2*c) 
*sin(1/2*d*x+1/2*c)^2*a-3*A*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2* 
c),2^(1/2))*a+2*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b-C*b*(sin(1/2*d 
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a)/sin(1/2*d*x+1/2*c)/(2*cos 
(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.7.78.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 190, normalized size of antiderivative = 2.00 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} {\left (3 \, A + C\right )} b \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (3 \, A + C\right )} b \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (A - C\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (A - C\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (C b \cos \left (d x + c\right ) + 3 \, A a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )} \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorith 
m="fricas")
 
output
1/3*(-I*sqrt(2)*(3*A + C)*b*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) + I*sqrt(2)*(3*A + C)*b*cos(d*x + c)*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(A - C)*a*cos( 
d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c))) + 3*I*sqrt(2)*(A - C)*a*cos(d*x + c)*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(C*b*cos 
(d*x + c) + 3*A*a)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 
3.7.78.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(3/2),x)
 
output
Timed out
 
3.7.78.7 Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorith 
m="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), 
x)
 
3.7.78.8 Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(3/2),x, algorith 
m="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), 
x)
 
3.7.78.9 Mupad [B] (verification not implemented)

Time = 2.84 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.18 \[ \int \frac {(a+b \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,C\,b\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(((A + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x)^(3/2),x)
 
output
(2*C*b*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*A*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*C*a*ellipticE(c/2 + (d*x) 
/2, 2))/d + (2*A*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2 
))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))